Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
J Med Virol ; 96(5): e29671, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747003

RESUMEN

The coronavirus disease of 2019 (COVID-19) pandemic has led to more than 700 million confirmed cases and nearly 7 million deaths. Although severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus mainly infects the respiratory system, neurological complications are widely reported in both acute infection and long-COVID cases. Despite the success of vaccines and antiviral treatments, neuroinvasiveness of SARS-CoV-2 remains an important question, which is also centered on the mystery of whether the virus is capable of breaching the barriers into the central nervous system. By studying the K18-hACE2 infection model, we observed clear evidence of microvascular damage and breakdown of the blood-brain barrier (BBB). Mechanistically, SARS-CoV-2 infection caused pericyte damage, tight junction loss, endothelial activation and vascular inflammation, which together drive microvascular injury and BBB impairment. In addition, the blood-cerebrospinal fluid barrier at the choroid plexus was also impaired after infection. Therefore, cerebrovascular and choroid plexus dysfunctions are important aspects of COVID-19 and may contribute to neurological complications both acutely and in long COVID.


Asunto(s)
Barrera Hematoencefálica , COVID-19 , Plexo Coroideo , SARS-CoV-2 , Barrera Hematoencefálica/virología , Animales , Plexo Coroideo/virología , Plexo Coroideo/patología , COVID-19/virología , COVID-19/patología , COVID-19/complicaciones , COVID-19/fisiopatología , Ratones , Uniones Estrechas/virología , Modelos Animales de Enfermedad , Enzima Convertidora de Angiotensina 2/metabolismo , Inflamación/virología , Humanos , Pericitos/virología , Pericitos/patología
2.
JHEP Rep ; 6(5): 101038, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38694959

RESUMEN

Background & Aims: Liver diseases resulting from chronic HBV infection are a significant cause of morbidity and mortality. Vaccines that elicit T-cell responses capable of controlling the virus represent a treatment strategy with potential for long-term effects. Here, we evaluated vaccines that induce the activity of type I natural killer T (NKT) cells to limit viral replication and license stimulation of conventional antiviral T-cells. Methods: Vaccines were prepared by conjugating peptide epitopes to an NKT-cell agonist to promote co-delivery to antigen-presenting cells, encouraging NKT-cell licensing and stimulation of T cells. Activity of the conjugate vaccines was assessed in transgenic mice expressing the complete HBV genome, administered intravenously to maximise access to NKT cell-rich tissues. Results: The vaccines induced only limited antiviral activity in unmanipulated transgenic hosts, likely attributable to NKT-cell activation as T-cell tolerance to viral antigens is strong. However, in a model of chronic hepatitis B involving transfer of naive HBcAg-specific CD8+ T cells into the transgenic mice, which typically results in specific T-cell dysfunction without virus control, vaccines containing the targeted HBcAg epitope induced prolonged antiviral activity because of qualitatively improved T-cell stimulation. In a step towards a clinical product, vaccines were prepared using synthetic long peptides covering clusters of known HLA-binding epitopes and shown to be immunogenic in HLA transgenic mice. Predictions based on HLA distribution suggest a product containing three selected SLP-based vaccines could give >90 % worldwide coverage, with an average of 3.38 epitopes targeted per individual. Conclusions: The novel vaccines described show promise for further clinical development as a treatment for chronic hepatitis B. Impact and Implications: Although there are effective prophylactic vaccines for HBV infection, it is estimated that 350-400 million people worldwide have chronic hepatitis B, putting these individuals at significant risk of life-threatening liver diseases. Therapeutic vaccination aimed at activating or boosting HBV-specific T-cell responses holds potential as a strategy for treating chronic infection, but has so far met with limited success. Here, we show that a glycolipid-peptide conjugate vaccine designed to coordinate activity of type I NKT cells alongside conventional antiviral T cells has antiviral activity in a mouse model of chronic infection. It is anticipated that a product based on a combination of three such conjugates, each prepared using long peptides covering clusters of known HLA-binding epitopes, could be developed further as a treatment for chronic hepatitis B with broad global HLA coverage.

3.
Angew Chem Int Ed Engl ; 63(2): e202314304, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38009446

RESUMEN

Bridged benzazepine scaffolds, possessing unique structural and physicochemical activities, are widespread in various natural products and drugs. The construction of these skeletons often requires elaborate synthetic effort with low efficiency. Herein, we develop a simple and divergent approach for constructing various bridged benzazepines by a photocatalytic intermolecular dearomatization of naphthalene derivatives with readily available α-amino acids. The bridged motif is created via a cascade sequence involving photocatalytic 1,4-hydroaminoalkylation, alkene isomerization and cyclization. Interestingly, the diastereoselectivity can be regulated through different reaction modes in the cyclization step. Moreover, aminohydroxylation and its further bromination have also been demonstrated to access highly functionalized bridged benzazepines. Preliminary mechanistic studies have been performed to get insights into the mechanism. This method provides a divergent synthetic approach for construction of highly functionalized bridged benzazepines, which have been otherwise difficult to access.

4.
J Am Chem Soc ; 145(42): 23385-23394, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37824756

RESUMEN

A mild and regiodivergent aminoalkylation of unactivated alkyl halides is disclosed via a dual photoredox/nickel catalysis. Bipyridyl-type ligands without an ortho-substituent control the site-selective coupling at the original position, while ortho-disubstituted ligands tune the site-selectivity at a remote, unprefunctionalized position. Mechanistic studies combined with DFT calculations give insight into the mechanism and the origins of the ligand-controlled regioselectivity. Notably, this redox-neutral, regiodivergent alkyl-alkyl coupling features mild conditions, broad substrate scope for both alkyl coupling partners, and excellent site-selectivity and offers a straightforward way for α-alkylation of tertiary amines to synthesize structurally diverse alkylamines and value-added amino acid derivatives.

5.
Org Lett ; 25(36): 6699-6704, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37675946

RESUMEN

Facile access to sterically hindered α-tertiary primary amines via photocatalytic radical coupling of native C(sp3)-H substrates with N-unsubstituted ketimines is reported. LiBr was used as a hydrogen atom transfer reagent to cleave C(sp3)-H bonds to get alkyl radicals. The in situ-generated HBr can then serve as a Bronsted acid to activate N-unsubstituted ketimines readily for single-electron reduction to deliver α-amino radicals. As a consequence, radical-radical coupling affords primary amines with a congested α-tertiary substituent. This reaction is highlighted by simple and mild conditions, 100% atom-economy, and broad hydrocarbon substrate scope for benzyl ethers, cyclic ethers, benzyl alcohols, alkylarenes, and carbocycles.

6.
Curr Alzheimer Res ; 20(5): 350-359, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37559542

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a well-known neurodegenerative disease that gradually induces neural network dysfunction and progressive memory deficits. Neural network activity is represented by rhythmic oscillations that influence local field potentials (LFPs). However, changes in hippocampal neural rhythmic oscillations in the early stage of AD remain largely unexplored. OBJECTIVE: This study investigated neural rhythmic oscillations in 3-month-old APP/PS1 and 5x- FAD mice to assess early neural connectivity in AD. METHODS: LFPs were recorded from the hippocampal CA1 region with implanted microelectrode arrays while the mice were in the awake resting stage. Welch fast Fourier transforms, continuous wavelet transforms, and phase-amplitude coupling analyses were used to compute the power density of different frequency bands and phase-amplitude modulation indices in the LFPs. RESULTS: Our results showed impaired theta, low gamma, and high gamma frequency band power in APP/PS1 and 5xFAD mice during the awake resting stage. AD mice also showed decreased delta, alpha, and beta frequency band power. Impaired theta-low gamma and theta-high gamma phaseamplitude coupling were observed in 5xFAD mice. CONCLUSION: This study revealed neural network activity differences in oscillation power and cross-frequency coupling in the early stage of AD, providing a new perspective for developing biomarkers for early AD diagnosis.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Ratones , Animales , Región CA1 Hipocampal , Hipocampo , Trastornos de la Memoria , Modelos Animales de Enfermedad
7.
Nat Commun ; 14(1): 1936, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024459

RESUMEN

Serine proteases (SP), including furin, trypsin, and TMPRSS2 cleave the SARS-CoV-2 spike (S) protein, enabling the virus to enter cells. Here, we show that factor (F) Xa, an SP involved in blood coagulation, is upregulated in COVID-19 patients. In contrast to other SPs, FXa exerts antiviral activity. Mechanistically, FXa cleaves S protein, preventing its binding to ACE2, and thus blocking viral entry and infection. However, FXa is less effective against variants carrying the D614G mutation common in all pandemic variants. The anticoagulant rivaroxaban, a direct FXa inhibitor, inhibits FXa-mediated S protein cleavage and facilitates viral entry, whereas the indirect FXa inhibitor fondaparinux does not. In the lethal SARS-CoV-2 K18-hACE2 model, FXa prolongs survival yet its combination with rivaroxaban but not fondaparinux abrogates that protection. These results identify both a previously unknown function for FXa and an associated antiviral host defense mechanism against SARS-CoV-2 and suggest caution in considering direct FXa inhibitors for preventing or treating thrombotic complications in COVID-19 patients.


Asunto(s)
COVID-19 , Factor Xa , Humanos , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Rivaroxabán/farmacología , Rivaroxabán/uso terapéutico , SARS-CoV-2/metabolismo , Internalización del Virus , Antivirales/farmacología
8.
BMC Cardiovasc Disord ; 23(1): 173, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36997869

RESUMEN

BACKGROUND: This study aimed to investigate the correlation between the high-risk characteristics of high-resolution MRI carotid vulnerable plaques and the clinical risk factors and concomitant acute cerebral infarction (ACI). METHODS: Forty-five patients diagnosed with a single vulnerable carotid plaque by MRI were divided into two groups based on whether they had ipsilateral ACI. The clinical risk factors and the observation values or frequency of occurrence of high-risk MRI phenotypes of plaque volume, LRNC, IPH and ulcer were statistically compared between the two groups. RESULTS: A total of 45 vulnerable carotid artery plaques were found in 45 patients, 23 patients with ACI and 22 patients without ACI. There were no significant differences in age, sex, smoking, serum TC, TG and LDL between the two groups (all P > 0.05), but the ACI group had significantly more patients with hypertension (P < 0.05) and the without ACI group coronary heart disease (P < 0.05). The volume of vulnerable carotid plaque in the group with ACI (1004.19 ± 663.57 mm3) was significantly larger than that in the group without ACI (487.21 ± 238.64 mm3) (P < 0.05). The phenotype of vulnerable carotid artery plaque was 13 cases of LRNC, 8 cases of LRNC + IPH, 5 cases of LRNC + Ulcer, and 19 cases of LRNC + IPH + Ulcer. There was no significant difference in this distribution between the two groups (all P > 0.05) with the exception of LRNC + IPH + Ulcer. The 14 cases of LRNC + IPH + LRNC + IPH + Ulcer (60.87%) in the group with ACI and was significantly greater than the 5 (22.73%) in patients without ACI (P < 0.05). CONCLUSION: It is preliminarily thought that hypertension is the main clinical risk factor for vulnerable carotid plaques with ACI and the combination of plaque volume with vulnerable carotid plaque and LRNC + IPH + Ulcer is a high-risk factor for complicated ACI. It has high clinical therapeutic value due to the accurate diagnosis of responsible vessels and plaques with high-resolution MRI.


Asunto(s)
Isquemia Encefálica , Estenosis Carotídea , Hipertensión , Placa Aterosclerótica , Accidente Cerebrovascular , Humanos , Úlcera/complicaciones , Accidente Cerebrovascular/etiología , Arterias Carótidas/diagnóstico por imagen , Imagen por Resonancia Magnética/efectos adversos , Isquemia Encefálica/complicaciones , Placa Aterosclerótica/complicaciones , Factores de Riesgo , Estenosis Carotídea/complicaciones , Estenosis Carotídea/diagnóstico por imagen , Enfermedad Aguda , Infarto Cerebral/etiología , Infarto Cerebral/complicaciones , Hipertensión/complicaciones , Hipertensión/diagnóstico
9.
PLoS Pathog ; 19(3): e1011240, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36961850

RESUMEN

One of the major pathogenesis mechanisms of SARS-CoV-2 is its potent suppression of innate immunity, including blocking the production of type I interferons. However, it is unknown whether and how the virus interacts with different innate-like T cells, including NKT, MAIT and γδ T cells. Here we reported that upon SARS-CoV-2 infection, invariant NKT (iNKT) cells rapidly trafficked to infected lung tissues from the periphery. We discovered that the envelope (E) protein of SARS-CoV-2 efficiently down-regulated the cell surface expression of the antigen-presenting molecule, CD1d, to suppress the function of iNKT cells. E protein is a small membrane protein and a viroporin that plays important roles in virion packaging and envelopment during viral morphogenesis. We showed that the transmembrane domain of E protein was responsible for suppressing CD1d expression by specifically reducing the level of mature, post-ER forms of CD1d, suggesting that it suppressed the trafficking of CD1d proteins and led to their degradation. Point mutations demonstrated that the putative ion channel function was required for suppression of CD1d expression and inhibition of the ion channel function using small chemicals rescued the CD1d expression. Importantly, we discovered that among seven human coronaviruses, only E proteins from highly pathogenic coronaviruses including SARS-CoV-2, SARS-CoV and MERS suppressed CD1d expression, whereas the E proteins of human common cold coronaviruses, HCoV-OC43, HCoV-229E, HCoV-NL63 and HCoV-HKU1, did not. These results suggested that E protein-mediated evasion of NKT cell function was likely an important pathogenesis factor, enhancing the virulence of these highly pathogenic coronaviruses. Remarkably, activation of iNKT cells with their glycolipid ligands, both prophylactically and therapeutically, overcame the putative viral immune evasion, significantly mitigated viral pathogenesis and improved host survival in mice. Our results suggested a novel NKT cell-based anti-SARS-CoV-2 therapeutic approach.


Asunto(s)
COVID-19 , Coronavirus Humano 229E , Células T Asesinas Naturales , Humanos , Animales , Ratones , Evasión Inmune , SARS-CoV-2
10.
Chem Sci ; 14(6): 1485-1490, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36794187

RESUMEN

A three-component reductive cross-coupling of aryl halides, aldehydes, and alkenes by nickel/photoredox dual catalysis is disclosed. The key to success for this tandem transformation is to identify α-silylamine as a unique organic reductant, which releases silylium ions instead of protons to prevent unwanted protonation processes, and meanwhile serves as Lewis acid to activate aldehydes in situ. This dual catalytic protocol completes a traditional conjugate addition/aldol sequence that eliminates the requirement of organometallic reagents and metal-based reductants, thus providing a mild synthetic route to highly valuable ß-hydroxyl carbonyl compounds with contiguous 1,2-stereocenters.

11.
J Med Virol ; 95(2): e28472, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36606611

RESUMEN

The choroid plexus (ChP) is the source of cerebrospinal fluid (CSF). The ChP-CSF system not only provides the necessary cushion for the brain but also works as a sink for waste clearance. During sepsis, pathogens and host immune cells can weaken the ChP barrier and enter the brain, causing cerebral dysfunctions known as sepsis-associated encephalophagy. Here, we used human ChP organoid (ChPO) to model herpes simplex virus type 1 (HSV-1) infection and found ChP epithelial cells were highly susceptible to HSV-1. Since the current ChPO model lacks a functional innate immune component, particularly microglia, we next developed a new microglia-containing ChPO model, and found microglia could effectively limit HSV-1 infection and protect epithelial barrier in ChPOs. Furthermore, we found the innate immune cyclic GMP-AMP synthase (cGAS)-STING pathway and its downstream interferon response were essential, as cGAS inhibitor RU.512 or STING inhibitor H-151 abolished microglia antiviral function and worsened ChP barrier in organoids. These results together indicated that cGAS-STING pathway coordinates antiviral response in ChP and contributes to treating sepsis or related neurological conditions.


Asunto(s)
Antivirales , Herpesvirus Humano 1 , Humanos , Microglía/metabolismo , Plexo Coroideo/metabolismo , Transducción de Señal , Inmunidad Innata , Nucleotidiltransferasas/metabolismo , Organoides
12.
mBio ; 14(1): e0334922, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36625590

RESUMEN

Mitogen-activated protein kinases (MAPKs) play critical roles in the induction of numerous cytokines, chemokines, and inflammatory mediators that mobilize the immune system to counter pathogenic infections. Dual-specificity phosphatase 1 (DUSP1) is a member of the dual-specificity phosphatases that inactivates MAPKs through a negative-feedback mechanism. Here, we report that in response to viral and bacterial infections, not only the DUSP1 transcript but also its N6-methyladenosine (m6A) levels rapidly increase together with that of the m6A reader protein YTHDF2, resulting in enhanced YTHDF2-mediated DUSP1 transcript degradation. The knockdown of DUSP1 promotes p38 and Jun N-terminal kinase (JNK) phosphorylation and activation, thus increasing the expression of innate immune response genes, including the interleukin-1ß (IL-1ß), colony-stimulating factor 3 (CSF3), transglutaminase 2 (TGM2), and proto-oncogene tyrosine-protein kinase Src (SRC) genes. Similarly, the knockdown of the m6A eraser ALKBH5 increases the DUSP1 transcript m6A level, resulting in accelerated transcript degradation, the activation of p38 and JNK, and the enhanced expression of IL-1ß, CSF3, TGM2, and SRC. These results demonstrate that m6A and the reader protein YTHDF2 orchestrate optimal innate immune responses during viral and bacterial infections by downregulating the expression of a negative regulator, DUSP1, of the p38 and JNK pathways that are central to innate immune responses against pathogenic infections. IMPORTANCE Innate immunity is central to controlling pathogenic infections and maintaining the homeostasis of the host. In this study, we have revealed a novel mechanism regulating innate immune responses during viral and bacterial infections. We have found that N6-methyladenosine (m6A) and the reader protein YTHDF2 regulate dual-specificity phosphatase 1, a negative regulator of the mitogen-activated protein kinases p38 and JNK, to maximize innate immune responses during viral and bacterial infections. These results provide novel insights into the mechanism regulating innate immunity, which could help in the development of novel approaches for controlling pathogenic infections.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos , Virosis , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Inmunidad Innata/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Factores de Transcripción/metabolismo , Fosfatasas de Especificidad Dual/metabolismo , Fosfatasa 1 de Especificidad Dual/genética , Fosfatasa 1 de Especificidad Dual/metabolismo , Proteínas de Unión al ARN/genética
13.
Front Public Health ; 10: 1035065, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466512

RESUMEN

Objectives: The commonly used methods for the occupational health risk assessment (OHRA) of chemical toxicants cannot fully meet the needs of practical work. This study evaluated OHRA strategies for chemical toxicants in the workplace by establishing a quantitative analysis model. Methods: Five typical industries in China that implement OHRA using the six common models (the Environmental Protection Agency, Australian, Romanian, Singaporean, International Council on Mining and Metals, and the Control of Substances Hazardous to Health models) were selected as the research objects. We established a quantitative analysis model to compare the six models and applied it to compare the results obtained using each model and preliminarily analyze the advantages, limitations, and application scope of each method. Results: The risk ratio (RR) values of the six methods decreased in the following order: RREPA > RRCOSHH > RRICMM > RRAustralia > RRSingaporean > RRRomanian (P < 0.05). Among the six models, the Singaporean model had the strongest RR correlation with the other models (P < 0.01). The sequence of RRs obtained from the Singaporean, ICMM, Australian, and Romanian models in the five industries was consistent with the sequence of the three inherent risk levels in those industries. Only the Romanian model could distinguish between the RRs of all five industries. The EPA and Singaporean models could effectively distinguish the differences in inherent risk for four hazard factors (manganese and inorganic compounds, benzene, xylene, and ethyl acetate), with the assessment accuracy being relatively higher for the EPA model. Conclusions: Among the six models, the EPA model had the relatively highest accuracy in assessing chemical toxicants, followed by the Singaporean model. The EPA and Romanian models were strongest in differentiating the differences in toxicity risk. More studies on OHRA methodology are needed.


Asunto(s)
Industrias , Lugar de Trabajo , Estados Unidos , Humanos , Australia , Medición de Riesgo , Etnicidad
14.
J Am Chem Soc ; 144(39): 17776-17782, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36136777

RESUMEN

A mild and site-selective hydroaminoalkylation of activated and unactivated alkenes via dual photoredox/Ni catalysis is developed. This dual catalytic strategy enables exclusive access to α-selective products, which is complementary to previously reported photocatalytic hydroaminoalkylation of activated alkenes that provides the ß-selective products. The chain-walking of a Ni-H intermediate toward a carbonyl allows for the hydroaminoalkylation of unactivated alkenes at remote sp3 C-H sites. This method tolerates a broad substrate scope of both amines and alkenes as well as providing a streamlined synthesis of value-added ß-amino acid derivatives from readily available starting materials.


Asunto(s)
Alquenos , Níquel , Alquenos/química , Aminas/química , Aminoácidos , Catálisis , Níquel/química
15.
Org Lett ; 24(22): 3938-3943, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35605019

RESUMEN

An electron donor-acceptor complex-enabled, nickel-catalyzed three-component net-reductive 1,2-alkylacylation of alkenes is developed. This conjunctive reductive acyl cross-coupling process obviates the use of an exogenous photocatalyst and a stoichiometric metal-based reductant, affording various synthetically useful 1,3-dicarbonyl compounds in good yields with a broad substrate scope and excellent functional group tolerance. Both alkyl and acyl electrophiles are derived from the highly abundant and readily accessible carboxylic acids, making the catalytic 1,2-dicarbofunctionalization more synthetically general and sustainable.

16.
Cell Death Dis ; 13(3): 234, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35288544

RESUMEN

N6-methyladenosine (m6A) is a dynamic post-transcriptional RNA modification influencing all aspects of mRNA biology. While m6A modifications during numerous viral infections have been described, the role of m6A in innate immune response remains unclear. Here, we examined cellular m6A epitranscriptomes during infections of Pseudomonas aeruginosa and herpes simplex virus type 1 (HSV-1), and lipopolysaccharide (LPS) stimulation to identify m6A-regulated innate immune response genes. We showed that a significant portion of cellular genes including many innate immune response genes underwent m6A modifications in 5'UTR and 3'UTR. We identified common and distinct m6A-modified genes under different stimulating conditions. Significantly, the expression of a subset of innate immune response genes was positively correlated with m6A level. Importantly, we identified genes that had significant enrichments of m6A peaks during P. aeruginosa infection following knockdown of m6A "eraser" ALKBH5, confirming the regulation of these genes by m6A and ALKBH5. Among them, we confirmed the association of m6A modification with gene expression in immune response genes TNFAIP3, IFIT1, IFIT2 and IFIH1. Taken together, our results revealed the vital role of m6A in regulating innate immunity against bacterial and viral infections. These works also provided rich resources for the scientific community.


Asunto(s)
Inmunidad Innata , Virosis , Adenosina/análogos & derivados , Adenosina/metabolismo , Humanos , Inmunidad Innata/genética , Procesamiento Postranscripcional del ARN , Virosis/genética
17.
Opt Lett ; 47(2): 329-332, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35030599

RESUMEN

Reconfigurable photonic devices are important constituents for future optical integrated circuits, where electro-optic manipulation of the light field in a lithium niobate (LN) waveguide is one of the promising solutions. Herein, we demonstrate a paradigm shift of the beam steering mechanism where reconfigurable beam steering is enabled by the wavefront shaping technology. Furthermore, this strategy is fully compatible with the electro-optic tuning mechanism of the LN multimode waveguide, where microstructured serrated array electrodes are employed to fine tune the output beam upon its reconfigurable output position. Our results provide new, to the best of our knowledge, insight for molding the flow of light in multimode waveguides and shed new light on beam steering photonic devices.

18.
Angew Chem Int Ed Engl ; 61(3): e202114731, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-34783143

RESUMEN

A method was developed for ketone synthesis via a photoredox-assisted reductive acyl cross-coupling (PARAC) using a nickel/photoredox dual-catalyzed cross-electrophile coupling of two different carboxylic acid esters. A variety of aryl, 1°, 2°, 3°-alkyl 2-pyridyl esters can act as acyl electrophiles while N-(acyloxy)phthalimides (NHPI esters) act as 1°, 2°, 3°-radical precursors. Our PARAC strategy provides an alternative and reliable way to synthesize various sterically congested 3°-3°, 3°-2°, and aryl-3° ketones under mild and highly unified conditions, which have been otherwise difficult to access. The combined experimental and computational studies identified a Ni0 /NiI /NiIII pathway for ketone formation.

19.
mBio ; 12(5): e0233521, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34544279

RESUMEN

Newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a global pandemic with astonishing mortality and morbidity. The high replication and transmission of SARS-CoV-2 are remarkably distinct from those of previous closely related coronaviruses, and the underlying molecular mechanisms remain unclear. The innate immune defense is a physical barrier that restricts viral replication. We report here that the SARS-CoV-2 Nsp5 main protease targets RIG-I and mitochondrial antiviral signaling (MAVS) protein via two distinct mechanisms for inhibition. Specifically, Nsp5 cleaves off the 10 most-N-terminal amino acids from RIG-I and deprives it of the ability to activate MAVS, whereas Nsp5 promotes the ubiquitination and proteosome-mediated degradation of MAVS. As such, Nsp5 potently inhibits interferon (IFN) induction by double-stranded RNA (dsRNA) in an enzyme-dependent manner. A synthetic small-molecule inhibitor blunts the Nsp5-mediated destruction of cellular RIG-I and MAVS and processing of SARS-CoV-2 nonstructural proteins, thus restoring the innate immune response and impeding SARS-CoV-2 replication. This work offers new insight into the immune evasion strategy of SARS-CoV-2 and provides a potential antiviral agent to treat CoV disease 2019 (COVID-19) patients. IMPORTANCE The ongoing COVID-19 pandemic is caused by SARS-CoV-2, which is rapidly evolving with better transmissibility. Understanding the molecular basis of the SARS-CoV-2 interaction with host cells is of paramount significance, and development of antiviral agents provides new avenues to prevent and treat COVID-19 diseases. This study describes a molecular characterization of innate immune evasion mediated by the SARS-CoV-2 Nsp5 main protease and subsequent development of a small-molecule inhibitor.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteasas 3C de Coronavirus/metabolismo , Proteína 58 DEAD Box/metabolismo , Receptores Inmunológicos/metabolismo , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Células A549 , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Células CACO-2 , Proteasas 3C de Coronavirus/genética , Proteína 58 DEAD Box/genética , Ensayo de Inmunoadsorción Enzimática , Células HCT116 , Células HEK293 , Humanos , Inmunidad Innata/genética , Inmunidad Innata/fisiología , Immunoblotting , Interferón Tipo I/metabolismo , Ratones , Receptores Inmunológicos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Transducción de Señal/fisiología , Ubiquitinación , Replicación Viral/genética , Replicación Viral/fisiología
20.
Opt Lett ; 46(17): 4156-4159, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34469963

RESUMEN

Perfect optical vortices enable the unprecedented optical multiplexing utilizing orbital angular momentum of light, which, however, suffer from distortion when they propagate in inhomogeneous media. Herein, we report on the experimental demonstration of perfect optical vortice generation through strongly scattering media. The transmission-matrix-based point-spread-function engineering is applied to encode the targeted mask in the Fourier domain before focusing. We experimentally demonstrate the perfect optical vortice generation either through a multimode fiber or a ground glass, where the numerical results agree well with the measured one. Our results might facilitate the manipulation of orbital angular momentum of light through disordered scattering media and shed new light on the optical multiplexing utilizing perfect optical vortices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...